Alt Text
Office of Neuroscience Research > Did you know? > $3.6 million to fund personalized 3-D brain maps to guide neurosurgeries

$3.6 million to fund personalized 3-D brain maps to guide neurosurgeries

From the WUSTL Newsroom...

Removing a brain tumor requires walking a fine line: Remove too little, and the disease remains; remove too much, and sight, speech or movement may be impaired.

To help strike that delicate balance, neurosurgeries often are performed with the aid of 3-D maps of patients’ brains. But such maps typically show anatomical landmarks and don’t indicate where critical brain functions such as language and motor function are found.

Now, a $3.6 million grant from the National Cancer Institute of the National Institutes of Health (NIH) will fund a collaboration between researchers at Washington University School of Medicine in St. Louis and Medtronic, maker of a neurosurgery navigational system that enables physicians to track where they are operating in relation to the patient’s brain anatomy. Together, the researchers will create a software program that uses information from MRI scans to build personalized 3-D maps of the location of brain functions, and integrates that information – along with an anatomic map – into a navigational system. These integrated maps can allow physicians to plan and perform surgeries more accurately and safely.

“Every neurosurgeon uses a navigation system, but we want it to be even better,” said Eric Leuthardt, MD, a professor of neurosurgery and of mechanical engineering and applied science, and the co-principal investigator on the grant. “We want to give them the ability not only to navigate the brain anatomy, but to know the implications of making incisions into each of those components of anatomy.”

When a part of the brain needs to be removed because of a tumor or other brain disease such as uncontrollable epilepsy, patients routinely undergo an MRI scan before the surgery to map the brain’s anatomy surrounding the portion to be removed.

However, mapping the functions those brain areas control is more difficult. The gold standard is cortical stimulation, in which doctors awaken patients during surgery and ask them to perform simple tasks – such as repeating a word – while they apply tiny electrical currents to the exposed surface of the brain. If the applied electrical stimulation interferes with a patient’s speech, the doctors know they have found a speech-related area of the brain.

But not everyone can be safely awakened during surgery, and some of those who can be awakened would really rather not be. Young children cannot undergo surgeries while awake or cooperate with the tasks. And the extent of damage to the brain caused by diseases such as brain tumors and epilepsy can make some adults unable to perform the tasks as well.

For the complete article, click here.