School of Medicine

Macular degeneration linked to aging immune cells

Studying mice and cells from patients, vision researchers at Washington University School of Medicine in St. Louis found that as immune cells called macrophages get older, they are more likely to contribute to inflammation and abnormal blood vessel growth in the back of the eye. This can damage vision in patients with age-related macular degeneration. (Danyel Cavazos/Michael Worful)

Older cells promote inflammation, abnormal blood vessel growth that can lead to blindness

From the WashU Newsroom

As people age, their immune systems age, too. And new research at Washington University School of Medicine in St. Louis suggests that aging immune cells increase the risk for age-related macular degeneration, a major cause of blindness in the United States.

Studying mice and cells from patients, the researchers found that as immune cells called macrophages age, they are more likely to contribute to the inflammation and abnormal blood vessel growth that damage vision in macular degeneration.

Their findings are published April 5 in the journal JCI Insight.

“Drug treatments for macular degeneration aren’t effective for some patients, who either have a minimal response or not response at all, and many patients continue to experience vision loss over the long term, even if they have a good initial response to treatment,” said senior investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences. “But by understanding what happens with the immune cells in the eye, it may be possible to develop therapies to help patients who can’t be helped with existing drugs.”

In experiments in mice, Apte’s team found that older macrophages carry larger amounts of short snippets of genetic material, called microRNAs, that govern how cells express genes. The researchers found significantly higher levels of microRNA-150 in macrophages in the eyes of older mice.

MicroRNAs help regulate many things in cells by binding to several genes to influence how those genes make proteins. In this study, the researchers found that microRNA-150 seemed to be guiding older macrophages toward promoting inflammation and abnormal blood vessel formation in a mouse model of macular degeneration.

The researchers also tested blood samples from human subjects with and without macular degeneration. The samples from those with macular degeneration also had significantly higher levels of microRNA-150 in their macrophages.

“We think microRNA-150 may be a potential therapeutic target, or at least a biomarker, for aggressive disease and risk of vision loss,” said first author Jonathan B. Lin, an MD/PhD student at the School of Medicine.

  Read more at the WashU Medicine News Hub.