McKelvey School

Multi-institutional team to study effects of age, gender on brain injury mechanics

A team of researchers, led by Philip V. Bayly in the McKelvey School of Engineering at Washington University, plans to use MRI to study the brains of healthy, uninjured individuals to create models of brain motion to enable the researchers to predict the chronic effects of repeated head impacts in both men and women. (Image: Shutterstock)

Traumatic brain injury and chronic traumatic encephalopathy (CTE) have become common in athletes who suffer repeated blows to the head. Most recently, former New England Patriots tight end Rob Gronkowski revealed that he had sustained about 20 concussions during his nine-year career in the National Football League.

Now, a team of researchers nationwide, led by Philip V. Bayly in the McKelvey School of Engineering at Washington University in St. Louis, plans to use MRI to study the brains of healthy, uninjured individuals in various age ranges to create models of brain motion over the life span. Their goal is to enable the researchers to predict the chronic effects of repeated head impacts in both men and women. The work is supported by a five-year, $3.6 million grant from the National Institutes of Health.

“There is no debate that there are cumulative effects of repeated impacts on the neurophysiology of the brain,” said Bayly, the Lilyan & E. Lisle Hughes Professor of Mechanical Engineering and chair of the Department of Mechanical Engineering & Materials Science. “The question is: What are the exact relationships between the mechanical forces and those neurobiological changes, such as the accumulation of tau proteins in different areas, and the resulting changes in behavior.”

Bayly

In this study, Bayly and the research team plan to obtain MRI scans of teens ages 14 to 17, young adults ages 18 to 22, adults 20 to 50, and adults older than 50. Previous studies have not included such a range in ages, Bayly said.

“The specific focus of this grant is to try to determine the differences mechanically between the response of the adolescent brain, the response of the adult brain and the response of the older brain,” he said. “We are also looking at the differences between the behavior of the male brain and the female brain. There is some evidence that female athletes are at greater risk for injury due to participation in sports, and this should hopefully illuminate to what extent that is due to mechanical differences in the brain.”

Read more.