McKelvey School of Engineering

New microscopy method provides unprecedented look at amyloid protein structure

A new technique developed in the lab of Matthew Lew at the McKelvey School of Engineering measures the orientation of single molecules. It is enabling, for the first time, optical microscopy to reveal nanoscale details about the structures of these problematic proteins. (Courtesy: Lew Lab)

Neurodegenerative diseases such as Alzheimer’s and Parkinson’s are often accompanied by amyloid proteins in the brain that have become clumped or misfolded. At Washington University in St. Louis, a newly developed technique that measures the orientation of single molecules is enabling, for the first time, optical microscopy to reveal nanoscale details about the structures of these problematic proteins.

Lew

Research from the lab of Matthew Lew, assistant professor in the Preston M. Green Department of Electrical & Systems Engineering at the McKelvey School of Engineering, describing this new approach was published in Optica, The Optical Society’s journal for high impact research.

“Neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases are leading causes of death all over the world,” said Tianben Ding, a PhD student in Lew’s lab and a co-author of the new paper. “We hope our single-molecule orientation imaging approach can provide new insights into amyloid structure and possibly contribute future development of effective therapeutics against the diseases.”

Biological and chemical processes are driven by complicated movements and interactions between molecules. Although most amyloid proteins may be non-toxic, the misfolding of even a few could eventually kill many neurons.

“We need imaging technologies that can watch these molecular movements in living systems to understand the fundamental biological mechanisms of disease,” Lew said. “Amyloid and prion-type diseases like Alzheimer’s, Parkinson’s and diabetes are our first targets for this technology, but we see it being applied in many other areas too.”

Read more.