Arts & Sciences

The fractal brain, from a single neuron’s perspective

Physicists studying the brain at Washington University in St. Louis have shown how measuring signals from a single neuron may be as good as capturing information from many neurons at once using big, expensive arrays of electrodes. (Image: Wessel laboratory)

Hacking into brain signals may be more straightforward than once thought.

Physicists studying the brain at Washington University in St. Louis have shown how measuring signals from a single neuron may be as good as capturing information from many neurons at once using big, expensive arrays of electrodes.

Wessel
Wessel

The new work continues the discussion about how the brain seems to function in a “critical” state, operating at the cusp between two phases of activity in a way that offers advantages for information transmission and processing. The research is reported June 12 in the Journal of Neuroscience.

What information single neurons receive about general neural circuit activity is a fundamental question of neuroscience. Researchers in the laboratory of Ralf Wessel, professor of physics in Arts & Sciences, have been exploring sensory information processing in the brain for years, using advanced neurotechnology and physics-inspired data analysis.

“We know that in critical systems you can zoom in or out really far, and get the same statistical patterns. This property is called scale-freeness — or fractalness — and criticality may explain the origins of widely observed fractal activity in the brain,” said James K. Johnson, first author of the paper and a graduate student in the Wessel laboratory.

For this new work, the researchers wanted to zoom all the way down. Evidence for criticality has been observed at all larger scales, they explained.

Read more.