School of Medicine

Dry eye disease alters how the eye’s cornea heals itself after injury

Studying mice, researchers at Washington University School of Medicine in St. Louis have found that proteins made by stem cells to help regenerate the cornea may become new targets for treating and preventing injuries to the cornea related to dry eye disease. When eyes are dry, the cornea is more susceptible to injury. By tracking the movements of stem cells (in fluorescent green) in a mouse eye, researchers were able to trace the cells as they differentiated into corneal cells and migrated to the center of the cornea, providing clues about how the cells work to help corneal injuries heal. (Image: Apte lab)

People with a condition known as dry eye disease are more likely than those with healthy eyes to suffer injuries to their corneas. Studying mice, researchers at Washington University School of Medicine in St. Louis have found that proteins made by stem cells that regenerate the cornea may be new targets for treating and preventing such injuries.

The study is published online Jan. 2 in the Proceedings of the National Academy of Sciences.

Dry eye disease occurs when the eye can’t provide adequate lubrication with natural tears. People with the common disorder use various types of drops to replace missing natural tears and keep the eyes lubricated, but when eyes are dry, the cornea is more susceptible to injury.

“We have drugs, but they only work well in about 10% to 15% of patients,” said senior investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor in the John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences. “In this study involving genes that are key to eye health, we identified potential targets for treatment that appear different in dry eyes than in healthy eyes. Tens of millions of people around the world — with an estimated 15 million in the United States alone — endure eye pain and blurred vision as a result of complications and injury associated with dry eye disease, and by targeting these proteins, we may be able to more successfully treat or even prevent those injuries.”

Read more.