Interdisciplinary research brings together imaging, aerosols and pediatric neuro oncology to fight tumors
From the WashU Newsroom…
A person’s brainstem controls some of the body’s most important functions, including heart beat, respiration, blood pressure and swallowing. Tumor growth in this part of the brain is therefore twice as devastating. Not only can such a growth disrupt vital functions, but operating in this area is so risky, many medical professionals refuse to consider it as an option.
New, interdisciplinary research from Washington University in St. Louis has shown a way to target drug delivery to just that area of the brain using noninvasive measures, bolstered by a novel technology: focused ultrasound.
The research comes from the lab of Hong Chen, assistant professor of biomedical engineering in the School of Engineering & Applied Science and assistant professor of radiation oncology at Washington University School of Medicine in St. Louis. Chen has developed a novel way in which ultrasound and its contrast agent — consisting of tiny bubbles — can be paired with intranasal administration, to direct a drug to the brainstem and, potentially, any other part of the brain.
The research, which included faculty from the Mallinckrodt Institute of Radiology and the Department of Pediatrics at the School of Medicine, along with faculty from the Department of Energy, Environmental & Chemical Engineering in the School of Engineering & Applied Science, was published online this week and will be in the Sept. 28 issue of the Journal of Controlled Release.
This technique may bring medicine one step closer to curing brain-based diseases such as diffuse intrinsic pontine gliomas (DIPG), a childhood brain cancer with a five-year survival rate of a scant two percent, a dismal prognosis that has remained unchanged over the past 40 years. (To add perspective, the most common childhood cancer, acute lymphoblastic leukemia, has a five-year survival rate of nearly 90 percent.)
“Each year in the United States, there are no more than 300 cases,” Chen said. “All pediatric diseases are rare; luckily, this is even more rare. But we cannot count numbers in this way, because for kids that have this disease and their families, it is devastating.”
Chen’s technique combines Focused UltraSound with IntraNasal delivery, (FUSIN). The intranasal delivery takes advantage of a unique property of the olfactory and trigeminal nerves: they can carry nanoparticles directly to the brain, bypassing the blood brain barrier, an obstacle to drug delivery in the brain.